
Figure 4 shows the dependence of the size of the first pressure maximum on the gas 
volume in the dimensionless variables Pm = Pm(~v ), Pm = Pmax/Pz, where Pmax is the 
pressure in the first peak. The initial increase in pressure with an increase in ~v - due 
to intensification of the effect of the gas cavity on the acceleration of the liquid - is 
subsequently replaced by a smooth decrease in ~ due to the increasing role of hydraulic 
losses [4]. At ~v > 0.007, the experimental data is somewhat higher than the theoretical 
results. This may be connected with the fact that, in the calculations, hydraulic losses 
were accounted for by means of constant coefficients Sz and ~ taken for a steady flow. 
For nonsteady motion, however, hydraulic resistance may depend on the instantaneous values 
of fluid velocity and acceleration. 

Thus, in the investigated case of relatively slow loading of a hydraulic system, the 
presence of a small volume of gas (~v ~ 0.01) leads to a substantial (albeit less than for 
instantaneous loading) increase in the pressures realized in the transient. The possibly 
dangerous effect of a localized gas volume such as that examined here should be considered 
in the analysis of transients in hydropneumatic systems. 
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WAVE FLOWS OF A CONDUCTING VISCOUS FLUID FILM IN A TRANSVERSE 

MAGNETIC FIELD 

Yu. N. Gordeev and V. V. Murzenko UDC 537.84 

Investigation of the wave regimes occurring in thin layers of a viscous weak-conducting 
fluid in magnetic and electrical fields is of interest in connection with the prospective 
utilization of film flows in nuclear power [i] and other technological processes. Experi- 
mental and theoretical investigations of wave effects in structures that occur on the free 
surface of an ordinary (non-electrically conducting) viscous fluid showed that these phenom- 
ena influence the stability and evolution of the film flows substantially [2-4]. The theory 
of the wave motion of a laminar viscous film surface was first developed by Kapitsa [2]. 
The critical value of the Reynolds number was obtained for which a wave mode is built up 
in the film when it is exceeded. It is shown that the mass transfer is improved in films 
in the wave mode as compared with ordinary flow conditions. At this time magnetohydrodynamic 
flows of conducting viscous fluid films are studied intensively [5-7]. A mathematical model 
is proposed in [5] for a flow with a free surface of the liquid-metal diaphragm of a power 
plant. The asymptotic of the surface of the spreading film in transverse electrical and 
magnetic fields is presented in [6]. The stability of a laminar flow of an electrically 
conducting fluid film is considered in an induction-free approximation in [7] on the basis 
of the Orr-Sommerfeld equation. 
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An equation is found in this paper that describes the longwave oscillations of the 
surface of this conducting fluid layer in crossed electrical and magnetic fields. Condi- 
tions for which different limit case of this equation hold are analyzed. 

I. FORMULATION OF THE PROBLEM 

Viscous fluid flow in external stationary magnetic H 0 and electrical E 0 fields can 
be described by the equations of magnetohydrodynamics, which reduce to the following for 
small magnetic Reynolds Re numbers (induction-free approximation) [8]: 

8u/Ot q- (uv)u  = - - v P / P o  -~ ~Au q- Fc, div u = 0, 

Fr = (poC)-l[j X H  o] + g, j = ~(E + c - l [ u •  E = - - g r a d  ~; 

Aq~ = c-trio �9 rot  u. 

(1.1) 

(1.2) 

Here u is the fluid velocity, P, P0 its pressure and density, c is the speed of sound, 
is the kinematic viscosity, o the fluid conductivity, and g the acceleration of gravity. 

Let us consider a plane flow: u ffi {u, v, 0}, au/Sz = 0. Equation (1.2) for the poten- 
tial here goes over into the Laplace equation A~ ffi 0, from which E = E 0 (constant external 
field). 

Therefore, for Re m ~ 1 we have for the flow of a conductive fluid in the electromagnetic 
fields displayed in Fig. i 

H = H  o, E = E  o. ( 1 . 3 )  

Conditions on the interfacial boundary between the fluid and the solid surface S s and on the 
free surface Sp [9] must be appended to the system (i.i) (F(r, t) = 0 is the equation of 
the free surface) 

u ( r , t ) = 0 ,  r ~ S s , [ P - - P a +  g . ( R 1  l + R ; 1 ) l n i =  athnk, 
( 1 . 4 )  

Ft + (uV) F = 0, 

where Pa is the atmospheric pressure, a, is the coefficient of surface tension, Rx, R2 are 
the principal radii of curvature at the point r of the surface Sp; n i are the cosines of 
the normal to the free surface and Oik is the viscous stress tensor. 

Let us consider the plane flow of a liquid film of thickness y = h(x, t) in constant 
transverse electrical and magnetic fields (see Fig. I). Let us introduce dimensionless 
variables and parameters 

x '  = x / l ,  y '  = ylho, h '  = hlh o, t '  = ~ t  o, 

P" : (P - -  Pa ) /P ,  u' = U/Uo, v '  = ~Vo, v o = 6u o, ( 1 . 5 )  

u 3 = ~ g h o ,  8 : holl : Uo=/(gl) = Fr, Po = PoUo~, ~ = cEo/uoHo 

(Fr is the Froude number, / is the characteristic length of the perturbation on the film 
surface, and h 0 is the mean film thickness). We later omit the primes on the dimensionless 
variables by setting x = x', y = y', h = h', etc. The system (i.i), (1.2), and (l.3)with 
boundary conditions (1.4) is here written in dimensionless variables (1.5) as 

ut + uu~ + vu~ q- P~ = ( t / R e ) ( u ~  q- u y / 8  ~) q-  Ha~(c~ - -  u)/(6~lRe); ( 1 . 6 )  

82(vt ~- uv+ q- vvy) + Py = (521Re)(v++ q- vyy/6 ~) - -  t ;  ( 1 . 7 )  

u~ + vv = 0; ( t . 8 )  

u = v = 0 ,  y = 0 ;  ( 1 . 9 )  

Ro 0 + ~n~) - we  0 + ~n~) 3/~' v = t + n; ( 1. lO) 

(uy + 8~v.)(1 - -  8~rl~ ~) - -  2~q~(u~ - -  vy) = 0, y = I q- rl; 

Th + uTl,, = v  

(Re  = U o i / ~  , Ha = Hohov/-~--~o~/c, We = o , / ( g P o , l )  2 

(1.11) 
( t . 1 2 )  

are the Reynolds, Hartman, and Weber numbers). 
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Fig. 1 

2. LONGWAVE APPROXIMATION 

Let us find the solution of the problem (1.6)-(1.12) in the form of an expansion in 
the small parameter 6 << I (longwave approximation) 

: ~  = 6~(~) + 62q(2) + . . . .  p = p(o)(~ + 6PO) + 62P(~ + . . . ,  

v = - - 5 ~ ( ~ ) l a x  - -  5~<~)/az - -  . . . ,  ( 2 . 1 )  

u = ~ ( y )  + 6or + a~ar + . . . .  

where , = 6,(1) + 62,(2) + ... is the stream function and u(~ p(0)(y) are solutions 
of (1.6)-(1.8) corresponding to the stationary fluid flow (q(0) = v(0) =O). The equations 
for p(0) and u(0) are 

~u~v + H a  ~ = 0 .  = - - l , u  v ( t ) =  ( 0 ) = 0 ,  P ( 1 ) = 0 .  ( 2 . 2 )  

Integrating ( 2 . 2 )  we obtain 

u (~ [i ch{Ha(y --i)}],p(o) 
( 2 . 3 )  

Let us introduce the new variables ~ and 
tuting (2.1) and (2.3) and the expressions 
nents of order 62 and higher, we have 

in place of x and t: �9 = 6t, ~ = x - Ft. Substi- 
for �9 and ~ into (1.6)-(1.8) and omitting compo- 

~,~(1) __ Ha ~ ~(yl) O, p a )  R e - 1  .,.u) = = - -  r o w .  ( 2 . 4 )  WYYY 

The boundary conditions for y - 0 and on the free surface, referred to y = I are 
written in this approximation in the form 

v = o , , " ) =  ~ ) =  o; ( 2 . 5 )  
y t,/)(1) 1](1) __ 2Be-1 .,.(1) We -(~) 

= = , ~  -- ,1~, ( 2 . 6 )  
(0) ( 1 ) ~ ) ( ~ t '  (/'/'( 0 ) F )  TI~ 1) '1]~ 1) y = l ,  uuv~ 1 + = 0 ,  -- o + = 0 .  

We find the solution of the system (2.4) with the boundary conditions (2.5) and (2.6) 
as follows for: 

~ ( 1 ) =  ~ ( c h H a y - - t )  
ch2Ha I1 (1), 

( 2 . 7 )  Ha(sh Hay + sh Ha) (I) ~(I) 
p(t) = __ We ~ - -  ~ R--e ch 2 Ha ~ + " 

To determine q(z) we use equations of second approximation in 6. Substituting (2.1), 
(2.3), (2.7) into (1.6), (1.9)-(1.12) and omitting components of order 63 and higher, we 

obtain 

.,.a) [ p ? )  . (oL,.a) . (oL,.(o =.,.U)l ~ __ Ha ~ ~(2) -- V ~ v  + Re -- 

v = O ,  ,(~-) = , ~ )  = o ;  

y ~, (2) (0) ~ ( I),,,i.,(1) ,~t,~(2) .,.(1) O, 
= ~ Uyy  J r  '1 WYYy "Jr TYY -- ~ = 

y = 1, 4 "  + F) + + o. 

Taking account of (2.3) and (2.7), we find a closed equation for w = Re n (I) (s = 
T2 Re aHa tanh Ha/cosh 2 Ha) from (2.8)-(2.10) 

(2.8) 

(2.9) 

(2.10) 
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w~ + ww~ + ew~ + ~w~ + r - -  0; 
e = [ a H a ( 3 H a  - -  3 t h  H a  - -  H a  t h  ~ Ha)  - -  2 a - ~ ( t I a  c t h  H a  - -  l ) c h  ~ Ha] / (4Ha~) ;  

---- (1 - -  ch Ha)(2  - -  2 ch H a  - -  H a  sh Ha ) / (2ReHa~) ,  

a) ----- W e  ch z H a ( H a  c t h  H a  - -  i ) / ( 2 a H a a ) .  

( 2 . 1 1 )  

Equation (2.11) is an evolutionary equation with nonlinearity of Burgers and KdV type. 
The interpretation of w as the momentum flux density and w2/2 as the energy flux density 
is standard for such equations [i0]. Momentum and energy conservation laws follow from 

. . . .  i (2.11) for the localized perturbations: ~ wd~=0,~  _ 

This means that the component cw~ in (2.11) corresponds to energy pumping into the wave 
while ww~ to its dissipation. Pumping is realized at low frequencies and its dissipation 

at high [requencies. The nonlinear component ww~ affords the possibility of energy being 
pumped from oscillations at low frequency to high-frequency osoillations. The term ~w~ 
in (2.11) describes energy dispersion. 

It is easy to show that for any Ha > 0 the coefficients are ~ > 0 and ~ > 0. The sign 
of r is determined by the quantity a: if a 2 > (a*) 2 = 2(Ha coth Ha - l)coshiHa/[Ha(3Ha - 
3 tanh Ha - Ha tanh2Ha] > 0, then e > 0; while for a< a*, e < 0. It hence follows that energy 
pumping into the wave (e > 0) holds if the electrical field E 0 is sufficiently large. In 
this connection, an analogy can be noted between the process under consideration and the 
runoff of a viscous, non-electrically conductive fluid on an inclined plane [4]. A critical 
parameter also exists here, the angle ~e between the inclined plane and the vertical. If 
~<~0, then the oscillations on the fluid surface damp out, if ~>~0, the perturbation 
energy does not decrease. 

3. PERIODIC SOLUTIONS OF (2.11) 

Let us consider the solutions of (2.11) of the stationary travelling wave .type in which 
w is a function of the variable 8 = ~ - Ds (D is the velocity of wave propagation). In 
this case (2.11) is written in the form 

o, wIv -5 I~w'" -5 ~w"  + ~ w '  - -  w'  = O. 

which allows solutions of wave front, solitary, and periodic wave type. 
with respect to 8, we obtain 

(oH'" + ~H" -5 ell' -5 H(2H -- D) = O, 

H = (w -- D)/4 -5 I/(m/4) ~ -5 q/[~ 

(3.1) 

integrating (3.1) 

(3.2) 

(q is the constant of integration). For periodic waves we find q from the condition 

wd8 = 0 (~ is the wavelength), which is a consequence of defining w as the deviation 
0 

from the mean film thickness. 

Equation (3.2) has two homogeneous stationary solutions: H = H I = 0 and H = H 2 = 
D/2. The differential equation (3.2) is written in the form of a system of first-order 
equations 

d H / d 8  = Q, dQ/d8 = R ,  ~ d R / d 8  = - - ~ R  - -  eQ - -  H ( 2 H  - -  D ) .  (3.3) 

To investigate (3.3) we use methods of the theory of dynamical systems and 8 is inter- 
preted as the time (-~ < 8 < m, 8 ~ m) [3]. The dynamical system (3.3) has two fixed points 
Sl(O, O, 0), and S2(D/2, 0, 0), corresponding to the stationary solutions H I and H 2. The 
eigenvalues of the Jacobi matrix of the linearized system (3.3) are determined in the neigh- 
borhood of the fixed point S k from 

~p3 -5 ~p~ + ep -5 (--I)~D = 0. 

For IDI < 8e/~ the real parts of the roots of the characteristic equation are strictly nega- 
tive, and therefore, the fixed points S k (k = I, 2) are stable. For k = I, D = -8~/~ and 
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k = 2, D = ~c/~ the characteristic equation has the roots Pl = -~/m and P2,3 = +_i~m. 

If D > BE/m, then the fixed point S 2 becomes linearly unstable, while S l is linearly unstable 
for D < -~E/~, i.e., bifurcation occurs for generation of the cycle for D = _+~E/m. 

Let us find the solution of the system (3.3) and therefore of (3.2) also near the bifur- 
cation point D = ~E/m. Let us use the algorithm proposed in [9] that is based on applica- 
tion of the theorem of a central manifold and on reduction of an autonomous system correspond- 
ing to (3.2) to normal Poincar~ form. For 0 < D- D, < 6 << 1 such a Solution has the form 

D ~i r 2~0 . 2 ~ ]  t / ~ \~r (5 ~2),g 
- 

(3.4) 4nO ] x cos ~ + 2 (i - -  2? ) sin -~- - -  3 (?2 + 4) (1 + ?3)/7 + O (~),  

where  T = 2~r + 252(4~ 2 + 2 5 ) / [ 3 ( ' / 2  + 4 ) ( ?  2 + 1 )2 ]}  i s  t h e  p e r i o d  and 62 = (D - D , ) /  

P2 + O[(D - D , ) ~ ] ;  P2 = 2(?  2 + 8 ) / [ ~ ( u  2 + 4 ) ( ?  2 + l ) ] .  S i n c e  t h e  F l o q u e t  i n d e x  i s  $ = $2~ 2 + 

O ( ~ ) ;  $2 = - 2 ( ~  2 + 8 ) [ [ Y ( ~  2 + 4 ) ( ?  2 + 1 ) ] ,  t h e n  ( 3 . 4 )  i s  s t a b l e  by v i r t u e  o f  t h e H o p f t h e o r e m  [ 9 ] .  
For  c e r t a i n  [D[ > f~s/m, Eq. ( 3 . 2 ) ,  and t h e r e f o r e  a l s o  ( 2 . i l )  have  s o l u t i o n s  o f  s o l i t a r y  wave 
type. In certain particular cases they can be represented analytically [ii], although they 
can generally only be found numerically. 

Therefore, an equation is obtained that describes perturbation wave propagation over 
a conducting fluid film surface in transverse constant magnetic and electrical fields. The 
equation is a generalization of the known Burgers-Korteweg-deVries equation. Physical condi- 
tions are indicated for which different limit forms of the equation are valid. It is shown 
that this equation has two bifurcation points for generation of a cycle, and consequently, 
periodic solutions near these points. 
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